Data & Methods
Comprehensive overview of our data preprocessing, machine learning workflows, and optimization methodologies for ceramic-filled UV resin formulation development.
Missing Value Handling
Missing data points are addressed through multiple strategies: deletion of incomplete records (when <5% of data), K-Nearest Neighbor imputation for continuous variables, and mode imputation for categorical variables.
Outlier Detection & Treatment
Statistical outliers are identified using the Interquartile Range (IQR) method and 3-sigma rule. Physical plausibility checks ensure viscosity values remain within instrument limits and cure depths don't exceed film thickness.
Feature Engineering
- • One-hot encoding for categorical variables (dispersant type, thickener class)
- • Derived features: Volume fraction from solids content and particle density
- • Reactive monomer fraction: Monomer weight / (Monomer + Oligomer)
- • Sedimentation rate: (Sed₂₄ₕ - Sed₄ₕ) / 20h
Python Implementation Example:
import pandas as pd from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.impute import KNNImputer # Load and preprocess data df = pd.read_excel('R_T-161-X.xlsx') df['volume_fraction'] = df['solids_content'] / 100 * df['particle_density'] df['reactive_monomer_fraction'] = df['monomer_weight'] / (df['monomer_weight'] + df['oligomer_weight']) # Handle missing values imputer = KNNImputer(n_neighbors=5) df_numeric = imputer.fit_transform(df.select_dtypes(include=[np.number])) # Scale features scaler = StandardScaler() X_scaled = scaler.fit_transform(df_numeric)
Algorithm Selection
Baseline Models:
- • Linear Regression (Ridge/Lasso)
- • Decision Tree Regressor
- • k-Nearest Neighbors (KNN)
Advanced Models:
- • Random Forest Regressor
- • Gradient Boosting (XGBoost/LightGBM)
- • Support Vector Regression (SVR)
- • Gaussian Process Regression (GPR)
Hyperparameter Optimization
Systematic optimization using GridSearchCV for small parameter spaces, RandomizedSearchCV for larger spaces, and Bayesian Optimization (using scikit-optimize) for efficient exploration of high-dimensional parameter spaces.
Model Training Example:
from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV, cross_val_score from sklearn.multioutput import MultiOutputRegressor # Define parameter grid param_grid = { 'n_estimators': [100, 200, 300], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } # Multi-output regression for viscosity, cure depth, etc. rf = RandomForestRegressor(random_state=42) multi_rf = MultiOutputRegressor(rf) # Grid search with cross-validation grid_search = GridSearchCV(multi_rf, param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=-1) grid_search.fit(X_train, y_train) print(f"Best parameters: {grid_search.best_params_}") print(f"Best CV score: {grid_search.best_score_}")
Cross-Validation Strategy
5-fold cross-validation on training data to prevent overfitting. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R² score for each target variable.
Feature Importance Analysis
- • Tree-based importance: Built-in feature_importances_ from Random Forest/XGBoost
- • Permutation importance: Model-agnostic method measuring performance degradation
- • SHAP values: Local explanations showing individual prediction contributions
Residual Analysis
Systematic examination of prediction residuals to identify systematic biases, heteroscedasticity, and model limitations across different parameter ranges.
Multi-Objective Optimization
Simultaneous optimization of conflicting objectives (e.g., minimize viscosity while maximizing cure depth) using Pareto front analysis to identify optimal trade-offs.
Bayesian Optimization
Efficient exploration of parameter space using Gaussian Process surrogate models and acquisition functions (Expected Improvement, Upper Confidence Bound) to minimize experimental iterations.
Pareto Front Calculation:
import numpy as np from scipy.optimize import minimize from sklearn.gaussian_process import GaussianProcessRegressor def is_pareto_optimal(costs): """Find Pareto optimal points in multi-objective space""" is_efficient = np.ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): if is_efficient[i]: # Remove dominated points is_efficient[is_efficient] = np.any(costs[is_efficient] < c, axis=1) is_efficient[i] = True return is_efficient # Multi-objective function def objective(x): viscosity = model_viscosity.predict([x])[0] cure_depth = model_cure_depth.predict([x])[0] return [viscosity, -cure_depth] # Minimize viscosity, maximize cure depth # Generate Pareto front pareto_points = [] for _ in range(1000): x0 = np.random.uniform(bounds[:, 0], bounds[:, 1]) result = minimize(objective, x0, bounds=bounds) if result.success: pareto_points.append(result.x) # Filter for Pareto optimal solutions objectives = np.array([objective(x) for x in pareto_points]) pareto_mask = is_pareto_optimal(objectives) pareto_front = np.array(pareto_points)[pareto_mask]